\qquad

C.U.SHAH UNIVERSITY

Summer-2015
Subject Code: 4SC03MTC2
Subject Name: Linear Algebra-I Course Name:B.Sc(Pure Science)

Date :5/5/2015
Semester:3
Mark: 70
Time:2:30To 5:30

Instructions:

1) Attempt all Questions of both sections in same answer book/Supplementary.
2) Use of Programmable calculator \& any other electronic instrument prohibited.
3) Instructions written on main answer book are strictly to be obeyed.
4) Draw neat diagrams \& figures (if necessary) at right places.
5) Assume suitable \& perfect data if needed.

SECTION-I

Q-1 a) Define: Vector space.
b) Let $T: R^{n} \rightarrow R$ be a map defined by $T\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}$, prove that T is a linear Transformation.
c) Show that $\{(1,1,1),(1,1,0),(1,0,0)\}$ is linearly independent in R^{3}.
d) Show that the vectors $A_{1}=\left[\begin{array}{cc}-3 & 4 \\ 2 & 0\end{array}\right]$ and $A_{2}=\left[\begin{array}{cc}3 & -4 \\ -2 & 0\end{array}\right]$ is linearly dependent.

Q-2 a) Show that R^{n} is vector space with the standard operations.
b) Obtain the matrix of a linear transformation $T: R^{3} \rightarrow R^{3}$ defined by $T(a, b, c)=(2 a, a+2 b+c, a+3 c)$ with respect to the basis $B_{1}=\{(1,0,0),(1,1,0),(1,1,1)\}$ and $B_{2}=\{(1,0,0),(0,1,0),(0,0,1)\}$.
c) Show that $W=\left\{\left(x_{1}, x_{2}\right): x_{1}=3 x_{2}\right\}$ is a subspace of R^{2}.

OR
Q-2 a) Show that $F[a, b]$, the set of all real valued functions on $[a, b]$ is a vector space with the standard operations.
b) Obtain the matrix of a linear transformation $T: p_{3} \rightarrow p_{2}$ be defined
by $T\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)=a_{3}+\left(a_{2}+a_{3}\right) x+\left(a_{0}+a_{1}\right) x^{2}$
with respect to the basis $B_{1}=\left\{1,(x-1),(x-1)^{2},(x-1)^{3}\right\}$ and $B_{2}=\left\{1, x, x^{2}\right\}$.
c) Show that $S=\left\{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \mid a_{0}, a_{1}, a_{2}, a_{3} \in R\right.$, $\left.a_{0}+a_{1}+a_{2}+a_{3}=0\right\}$
is a subspace of p_{3}, the space of all polynomials of degree 3 or less.
Q-3 a) Determine whether the following maps are linear transformations
i) $T: M_{m n} \rightarrow M_{n m}$, where $T(A)=A^{\prime}$
ii) $T: M_{22} \rightarrow R$, where $T\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=a^{2}+b^{2}$
b) Consider the basis $S=\left\{v_{1}, v_{2}\right\}$ for R^{2}, where $v_{1}=(1,1)$ and $v_{2}=(1,0)$ and let $T: R^{2} \rightarrow R^{2}$ be the linear transformation such that $T\left(v_{1}\right)=(1,-2)$ and $T\left(v_{2}\right)=(-4,1)$. Find a formula for $T\left(x_{1}, x_{2}\right)$ and use this formula to find $T(5,-3)$.
c) Determine whether $v_{1}=(2,2,2), v_{2}=(0,0,3)$ and $v_{3}=(0,1,1)$ span the vector space R^{3}.

OR

Q-3 a) Show that the set $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for the vector space M_{22}
where, $v_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], v_{2}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], v_{3}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right], v_{4}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$
b) Let V and W be a vector spaces. Prove that the dimension of $L(V, W)$ is $\operatorname{dim} V \times \operatorname{dim} W$.
c) The map $T: R^{3} \rightarrow R^{2}$ defined by $T(x, y, z)=(2 x-y+z, y-4 z)$, prove that T is a linear transformation.

SECTION-II

Q-4 a) Let $u=(1,2,3), v=(-2,1,2)$, find $\langle 2 u+3 v, u+v\rangle$.
b) Define: Kernel and Range.
c) If u and v are non-zero vectors in an inner product space and θ is the angle between u and $v,\langle u, v\rangle=0$ iff $\theta=\frac{\pi}{2}$.
d) Write standard matrix of identity operator.

Q-5 a) For linear transformation $T: R^{3} \rightarrow R^{3}, T(x, y, z)=(x-y+z, y-z, z)$ for all (x, y, z). Find T^{-1} if it exists.
b) Let V and W be finite dimensional vector spaces and $T: V \rightarrow W$ be a linear transformation.Prove that $\operatorname{dim} V=\operatorname{rank}(T)+\operatorname{nullity}(T)$.
c) Let $T: V \rightarrow W$ be the linear transformation. If $V=\operatorname{sp}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, prove that $\operatorname{Im}(T)=\operatorname{sp}\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n}\right)\right\}$.

OR

Q-5 a) Let V be any vector space over R. Let $T: V \rightarrow V$ be defined by $T(v)=k v, k \neq 0$, prove that T is a linear isomorphism.
b) If V and W are finite-dimensional vector spaces of the same dimension, prove that a linear map $T: V \rightarrow W$ is one-one if and only if it is onto.
c) Show that composition of two linear transformation is a linear transformation.

Q-6 a) Let $u=(3,-1), v=(2,-2), w=(-1,6)$ and $k=-2$. Verify the following using Euclidean inner product.
i) $\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle$
ii) $\langle k u, v\rangle=k\langle u, v\rangle$
iii) $\langle 0, u\rangle=<u, 0\rangle=0$
b) Let $T: R^{3} \rightarrow R^{3}$ be the linear transformation defined by $T(x, y, z)=(x+2 y-z, y+z, x+y-2 z)$.Find $\operatorname{ker}(T), \operatorname{Im}(T), n(T)$, $r(T)$.
c) Let P_{2} be the vector space with inner product. $\langle p, q\rangle=$ $\int_{-1}^{1} p(x) q(x) d x$. If $p(x)=1$ and $q(x)=x$. Show that p and q are orthogonal and verify the Pythagorean Theorem.

OR

Q-6 a) Determine whether there exists scalars k and l such that the vectors $u=(2, k, 6), v=(l, 5,3)$ and $w=(1,2,3)$ are mutually orthogonal with respect to the Euclidean inner product.
b) Let V be an inner product space, $\|u\|=\langle u, u\rangle^{\frac{1}{2}}$ satisfies the following
properties for all $u, v \in V$ and for any scalar k.
i) $\|u\| \geq 0$ and $\|u\|=0$ iff $u=0$
ii) $\|k u\|=|k|\|u\|$
iii) $\|u+v\| \leq\|u\|+\|v\|$
c) Let u, v, w be a vectors in a real inner product space V and k is any scalar. Then show that
i) $\langle u, v+w\rangle=\langle u, v\rangle+\langle u, w\rangle$
ii) $\langle u, k v\rangle=k\langle u, v\rangle$

