Enrollment No:-____

Exam Seat No:-____

C.U.SHAH UNIVERSITY

Summer-2015

Subject Code: 4SC03MTC2Subject Name: Linear Algebra-ICourse Name:B.Sc(Pure Science)Date :5/5/2015Semester:3Mark: 70

Time:2:30To 5:30

Instructions:

- 1) Attempt all Questions of both sections in same answer book/Supplementary.
- 2) Use of Programmable calculator & any other electronic instrument prohibited.
- 3) Instructions written on main answer book are strictly to be obeyed.
- 4) Draw neat diagrams & figures (if necessary) at right places.
- 5) Assume suitable & perfect data if needed.

SECTION-I

Q-1 a) Define: Vector space. (02)b) Let $T: \mathbb{R}^n \to \mathbb{R}$ be a map defined by $T(x_1, x_2, \dots, x_n) = x_1$, prove that T (02)is a linear Transformation. c) Show that $\{(1,1,1), (1,1,0), (1,0,0)\}$ is linearly independent in \mathbb{R}^3 . (02)d) Show that the vectors $A_1 = \begin{bmatrix} -3 & 4 \\ 2 & 0 \end{bmatrix}$ and $A_2 = \begin{bmatrix} 3 & -4 \\ -2 & 0 \end{bmatrix}$ is linearly (01)dependent. a) Show that R^n is vector space with the standard operations. Q-2 (07)b) Obtain the matrix of a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by (04)T(a, b, c) = (2a, a + 2b + c, a + 3c) with respect to the basis $B_1 = \{(1, 0, 0), (1, 1, 0), (1, 1, 1)\}$ and $B_2 = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}.$ c) Show that $W = \{(x_1, x_2): x_1 = 3x_2\}$ is a subspace of \mathbb{R}^2 . (03)Q-2 a) Show that F[a, b], the set of all real valued functions on [a, b] is a vector (07)space with the standard operations. b) Obtain the matrix of a linear transformation $T: p_3 \rightarrow p_2$ be defined (04)by $T(a_0 + a_1x + a_2x^2 + a_3x^3) = a_3 + (a_2 + a_3)x + (a_0 + a_1)x^2$ with respect to the basis $B_1 = \{1, (x - 1), (x - 1)^2, (x - 1)^3\}$ and $B_2 = \{1, x, x^2\}.$ c) Show that $S = \{a_0 + a_1x + a_2x^2 + a_3x^3 | a_0, a_1, a_2, a_3 \in R, \}$ (03) $a_0 + a_1 + a_2 + a_3 = 0\}$ is a subspace of p_3 , the space of all polynomials of degree 3 or less. Q-3 a) Determine whether the following maps are linear transformations (05)i) $T: M_{mn} \to M_{nm}$, where T(A) = A'*ii*) $T: M_{22} \to R$, where $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a^2 + b^2$ b) Consider the basis $S = \{v_1, v_2\}$ for R^2 , where $v_1 = (1, 1)$ and $v_2 = (1, 0)$ (05)

and let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation such that $T(v_1) = (1, -2)$ and $T(v_2) = (-4, 1)$. Find a formula for $T(x_1, x_2)$ and use this formula to find T(5, -3).

c) Determine whether $v_1 = (2,2,2), v_2 = (0,0,3)$ and $v_3 = (0,1,1)$ span (04) the vector space R^3 .

OR

- Q-3 a) Show that the set $S = \{v_1, v_2, v_3, v_4\}$ is a basis for the vector space M_{22} (05) where, $v_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $v_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $v_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
 - b) Let V and W be a vector spaces. Prove that the dimension of L(V, W) is (05) dim $V \times \dim W$.
 - c) The map $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (2x y + z, y 4z), (04) prove that *T* is a linear transformation.

SECTION-II

- Q-4 a) Let u = (1, 2, 3), v = (-2, 1, 2), find < 2u + 3v, u + v >. (02)
 b) Define: Kernel and Range. (02)
 c) If u and v are non-zero vectors in an inner product space and θ is the angle between u and v, < u, v > = 0 iff θ = π/2.
 d) Write standard matrix of identity operator. (01)
- Q-5 a) For linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (x y + z, y z, z) (05) for all (x, y, z). Find T^{-1} if it exists.
 - b) Let V and W be finite dimensional vector spaces and $T: V \to W$ be a (05) linear transformation. Prove that dim V = rank(T) + nullity(T).
 - c) Let $T: V \to W$ be the linear transformation. If $V = sp\{v_1, v_2, ..., v_n\}$, (04) prove that $Im(T) = sp\{T(v_1), T(v_2), ..., T(v_n)\}$.

OR

- Q-5 a) Let *V* be any vector space over *R*. Let $T: V \to V$ be defined by $T(v) = kv, k \neq 0$, prove that *T* is a linear isomorphism. (05)
 - b) If *V* and *W* are finite-dimensional vector spaces of the same dimension, (05) prove that a linear map $T: V \to W$ is one-one if and only if it is onto.
 - c) Show that composition of two linear transformation is a linear (04) transformation.
- Q-6 a) Let u = (3, -1), v = (2, -2), w = (-1, 6) and k = -2. Verify the (05) following using Euclidean inner product.
 - i) < u + v, w > = < u, w > + < v, w >
 - ii) < ku, v > = k < u, v >
 - iii) < 0, u > = < u, 0 > = 0
 - b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by (05) T(x, y, z) = (x + 2y - z, y + z, x + y - 2z). Find ker(T), Im(T), n(T), r(T).
 - c) Let P_2 be the vector space with inner product. $\langle p, q \rangle = (04)$ $\int_{-1}^{1} p(x) q(x) dx$. If p(x) = 1 and q(x) = x. Show that p and q are orthogonal and verify the Pythagorean Theorem.

OR

- Q-6 a) Determine whether there exists scalars k and l such that the vectors (05) u = (2, k, 6), v = (l, 5, 3) and w = (1, 2, 3) are mutually orthogonal with respect to the Euclidean inner product.
 - b) Let *V* be an inner product space, $||u|| = \langle u, u \rangle^{\frac{1}{2}}$ satisfies the following ⁽⁰⁵⁾

properties for all $u, v \in V$ and for any scalar k.

- i) $||u|| \ge 0$ and ||u|| = 0 iff u = 0
- ii) ||ku|| = |k|||u||
- iii) $||u + v|| \le ||u|| + ||v||$
- c) Let u, v, w be a vectors in a real inner product space V and k is any (04) scalar. Then show that
 - i) < u, v + w > = < u, v > + < u, w >
 - ii) < u, kv > = k < u, v >